I always believed that one can never learn the essence of anything without reinventing it. Once you reinvent things, you will never forget them — because otherwise you can just re-reinvent them.

Today I found that I forgot how to derive the defintion of the Y combinator. I learned it several years ago from an online article, but now the search “Y combinator” only brings me news about start-ups (sigh). I tried for two hours, but still couldn’t make the leap from the “poor man’s Y” to “Y”. Finally, I opened my good old friend *The Little Schemer*. Alas. Chapter 9 tells me exactly how to reinvent Y. Thank you Dan Friedman and Matthias Felleisen!

To prevent myself from forgetting how to derive Y again, I made a slide to record my understanding of it. I hope it can be of help to people (including the future me). So here it is.

Exercise: The Y combinator derived from this tutorial only works for direct recursion, try to derive the Y combinator for mutual recursive functions, for example the following two functions even and odd.

(define even
(lambda (x)
(cond
[(zero? x) #t]
[(= 1 x) #f]
[else (odd (sub1 x))])))
(define odd
(lambda (x)
(cond
[(zero? x) #f]
[(= 1 x) #t]
[else (even (sub1 x))])))

### Like this:

Like Loading...

*Related*

[…] recently I feel kind of relieved when I read this blog post this blog post by ying wang. He claims that people can never learn the essence of anything if they can not […]