# How to reinvent the Y combinator

I always believed that one can never learn the essence of anything without reinventing it. Once you reinvent things, you will never forget them — because otherwise you can just re-reinvent them.

Today I found that I forgot how to derive the defintion of the Y combinator. I learned it several years ago from an online article, but now the search “Y combinator” only brings me news about start-ups (sigh). I tried for two hours, but still couldn’t make the leap from the “poor man’s Y” to “Y”. Finally, I opened my good old friend *The Little Schemer*. Alas. Chapter 9 tells me exactly how to reinvent Y. Thank you Dan Friedman and Matthias Felleisen!

To prevent myself from forgetting how to derive Y again, I made a slide to record my understanding of it. I hope it can be of help to people (including the future me). So here it is.

Exercise: The Y combinator derived from this tutorial only works for direct recursion, try to derive the Y combinator for mutual recursive functions, for example the following two functions even and odd.

(define even (lambda (x) (cond [(zero? x) #t] [(= 1 x) #f] [else (odd (sub1 x))]))) (define odd (lambda (x) (cond [(zero? x) #f] [(= 1 x) #t] [else (even (sub1 x))])))

- Posted in: lambda calculus ♦ programming languages ♦ semantics ♦ tutorials

## 1 Comment

## Trackbacks